Comprehensive Molecular Characterization Papillary Renal Cell Carcinoma

The Cancer Genome Atlas Research Network

Renal Cell Carcinoma

Renal Cell Carcinoma

Clear Cell 75% Papillary 15% Chromophobe 5%

Oncocytoma 3%

Papillary Renal Cell Carcinoma

Type 1 Papillary

Type 2 Papillary

Hereditary Papillary Renal Carcinoma Type 1 Papillary Renal Carcinoma

Type 1 Papillary RCC

HPRC: *MET* Mutations

Type 2 Papillary RCC is Heterogeneous

Hereditary Leiomyomatosis Renal Cell Carcinoma (HLRCC)

Type 2 Papillary RCC

Fumarate Hydratase (FH): HLRCC Gene

the conversion of <u>fumarate</u> to <u>malate</u>

KIRP Analysis

Analysis Type	Method of Analysis	Samples Analysed	
Copy Number Analysis	SNP6.0 Arrays	161 PRCC Samples 161 Normals	
Somatic Mutation Analysis	Exome Sequencing	157 PRCC Samples 157 Normals	
Methylation Analysis	Illumina BeadChip Assays	161 PRCC Samples 45 Normals	
mRNA Expression Analysis	RNA-Seq	161 PRCC Samples 30 Normals	
miRNA Expression Analysis	RNA-Seq	161 PRCC Samples 32 Normals	
Protein Expression Analysis	Reverse phase protein array (RPPA)	125 PRCC Samples	

Pathology Analysis: N=161

TCGA-A4-7732 Type 1 PRCC N=75

TCGA-BQ-5878 Type 2 PRCC N=60

TCGA-BQ-5886
Unclassified PRCC
N=26

Chromosomal Copy Number Analysis

- Chromosomal level copy number analysis produced three distinct clusters
 - 1. Relative genomic stability
 - 2. Multiple chromosomal gain, notably chromosome 7
 - 3. Multiple deletions; including chromosome 9

- Cluster 2 predominantly Type 1 PRCC
- Cluster 1 and 3 predominantly Type 2 PRCC

Chromosomal Copy Number Analysis

- Chromosomal level copy number analysis produced three distinct clusters
 - 1. Relative genomic stability
 - 2. Multiple chromosomal gain, notably chromosome 7
 - 3. Multiple deletions; including chromosome 9

Somatic Exome Mutation Analysis

- Mutation analysis was performed using the MutSig 2.0CV with q-values <0.1
- In addition, analysis was performed to evaluate genes identified in PanCan21.

- Chromatin remodeling/modifier genes mutated in clear cell RCC were also mutated in PRCC
- Associated with Type 2 PRCC

Pathway Mutation Analysis

- Several of the genes associated with PRCC exist as components of pathways or complexes, such as the Hippo pathway and several chromatin modifier pathways.
- Mutations of pathway genes were found in both Type 1 and Type 2 PRCC
 - SWI/SNF complex (20% and 27% respectively)
 - Chromatin modifier pathways (35% and 38% respectively)
 - Hippo signaling pathway (3% and 10% respectively)

Type 1 PRCC Specific Alteration - MET

• 14 *MET* mutations were somatic; 3 were germline.

Type 1 PRCC Specific Alteration - MET

15 reads

(alt.)

no variant (n=158)

exon:E1

identified in 8 samples, resulting in the loss of the first two exons and gain of a novel exon.

Type 1 PRCC Specific Alteration - MET

• GISTIC analysis revealed a deleted region of chromosome 9p containing the *CDKN2A* (p16) gene.

- *CDKN2A* promoter hypermethylation was identified in 10 tumors.
- Each correlated with low expression.

- *CDKN2A* gene alterations were found in 21 tumors
- 15 (71%) were Type 2 PRCC

• Patients with *CDKN2A* alterations had poorer overall survival.

TFE3/TFEB Fusion PRCC

- TFE3/TFEB gene fusions were identified in 12% of Type 2 PRCC tumors, including patients in their 7th and 8th decade.
- The *TFE3* fusions included 4 with known fusion partners (*PRCC* and *SFPQ*) and 2 with novel fusion partners, *RBM10* and *DVL2*.
- The two *TFEB* fusions both involved novel fusion partners, *COL21A1* and *CADM2*.

Methylation Analysis

- Assessment of the global methylation patterns separated samples into 3 clusters
- One of which demonstrated the CpG Island Methylator Phenotype (CIMP).
- Eight of 9 CIMP PRCC samples were Type 2 PRCC.
- CIMP phenotype strongly associated with somatic and germline FH mutation, low *FH* expression

CIMP PRCC Phenotype

Early Onset

Low Survival

CIMP PRCC Phenotype

Increased Glycolysis, Fatty Acid Synthesis
Decreased TCA Cycle, Decreased AMPK

CIMP PRCC Phenotype

Cluster of Cluster Analysis (COCA)

Cluster of Cluster Analysis (COCA)

The NRF2 Pathway in Papillary Cancer

The NRF2 Pathway in Papillary Cancer

KIRP Conclusions

- 1. Type 1 PRCC and Type 2 PRCC are genomically distinctly different tumors with differing clinical outcomes.
- 2. Type 1 PRCC tumors are associated with *MET* mutations, *MET* splice variants and gain of chromosome 7.
- 3. Type 2 PRCC is made up of at least 3 distinct subtypes with differing survival.
- 4. *CDKN2A* alterations are associated with Type 2 PRCC and poor survival.

KIRP Conclusions

- 5. *TFE3* and *TFEB* gene fusions are found in 12% of Type 2 PRCC and can be found in older patients.
- 6. CIMP Type 2 PRCC tumors are early onset, poor survival tumors characterized by a metabolic shift to aerobic glycolysis and decreased oxidative phosphorylation.
- 7. The NRF2 pathway is up-regulated in Type 2 PRCC and is associated with high stage, low survival disease.

Comprehensive Molecular Characterization Papillary Renal Cell Carcinoma

The Cancer Genome Atlas Research Network

Comparative Copy Number Analysis

• KIRC: 3p loss

• KICH: multiple deletions

• KIRP: chromosome 7 increase

• Comparative analysis of tumors with & without *CDKN2A* alteration demonstrated significantly increased levels of pRB & cell cycle related genes.